How to Count Distinct Values in R?, using the n_distinct() function from dplyr, you can count the number of distinct values in an R data frame using one of the following methods.

With the given data frame, the following examples explain how to apply each of these approaches in practice.

Hypothesis Testing Examples-Quick Overview – Data Science Tutorials

## How to Count Distinct Values in R

Let’s make a data frame

df <- data.frame(team=c('A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'), Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â points=c(106, 106, 108, 110, 209, 209, 122, 212), Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â assists=c(203, 206, 204, 202, 24, 25, 125, 119)) df

team points assists 1Â Â Â AÂ Â Â 106Â Â Â Â 203 2Â Â Â AÂ Â Â 106Â Â Â Â 206 3Â Â Â AÂ Â Â 108Â Â Â Â 204 4Â Â Â AÂ Â Â 110Â Â Â Â 202 5Â Â Â BÂ Â Â 209Â Â Â Â Â 24 6Â Â Â BÂ Â Â 209Â Â Â Â Â 25 7Â Â Â BÂ Â Â 122Â Â Â Â 125 8Â Â Â BÂ Â Â 212Â Â Â Â 119

### Approach 1: Count Distinct Values in One Column

The following code demonstrates how to count the number of distinct values in the ‘team’ column using n distinct().

What is Ad Hoc Analysis? – Data Science Tutorials

count the number of distinct values in the ‘team’ column

library(dplyr) n_distinct(df$team) [1] 2

In the ‘team’ column, there are two separate values.

### Approach 2: Count Distinct Values in All Columns

The following code demonstrates how to count the number of unique values in each column of the data frame using the sapply() and n distinct() functions.

count the number of distinct values in each column

sapply(df, function(x) n_distinct(x))

teamÂ points assists Â Â Â Â Â 2Â Â Â Â Â Â 6Â Â Â Â Â Â 8

We can observe the following from the output:

In the ‘team’ column, there are two separate values.

Arrange the rows in a specific sequence in R – Data Science Tutorials

In the ‘points’ column, there are 6 different values.

The ‘assists’ column has 8 different values.

### Approach 3: Count Distinct Values by Group

The following code demonstrates how to count the number of distinct values by group using the n distinct() function.

count the number of different ‘points’ values by ‘team’

df %>% Â group_by(team) %>% Â summarize(distinct_points = n_distinct(points))

teamÂ distinct_points Â <chr>Â Â Â Â Â Â Â Â Â Â <int> 1 AÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3 2 BÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 3

We can observe the following from the output:

For team A, there are three different point values.

How to perform One-Sample Wilcoxon Signed Rank Test in R? – Data Science Tutorials

For team B, there are three different point values.